Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JBMR Plus ; 8(2): ziad012, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38505533

RESUMO

The fracture behavior of bone is critically important for evaluating its mechanical competence and ability to resist fractures. Fracture toughness is an intrinsic material property that quantifies a material's ability to withstand crack propagation under controlled conditions. However, properly conducting fracture toughness testing requires the access to calibrated mechanical load frames and the destructive testing of bone samples, and therefore fracture toughness tests are clinically impractical. Impact microindentation mimicks certain aspects of fracture toughness measurements, but its relationship with fracture toughness remains unknown. In this study, we aimed to compare measurements of notched fracture toughness and impact microindentation in fresh and boiled bovine bone. Skeletally mature bovine bone specimens (n = 48) were prepared, and half of them were boiled to denature the organic matrix, while the other half remained preserved in frozen conditions. All samples underwent a notched fracture toughness test to determine their resistance to crack initiation (KIC) and an impact microindentation test using the OsteoProbe to obtain the Bone Material Strength index (BMSi). Boiling the bone samples increased the denatured collagen content, while mineral density and porosity remained unaffected. The boiled bones also showed significant reduction in both KIC (P < .0001) and the average BMSi (P < .0001), leading to impaired resistance of bone to crack propagation. Remarkably, the average BMSi exhibited a high correlation with KIC (r = 0.86; P < .001). A ranked order difference analysis confirmed the excellent agreement between the 2 measures. This study provides the first evidence that impact microindentation could serve as a surrogate measure for bone fracture behavior. The potential of impact microindentation to assess bone fracture resistance with minimal sample disruption could offer valuable insights into bone health without the need for cumbersome testing equipment and sample destruction.

2.
bioRxiv ; 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37609257

RESUMO

The fracture behavior of bone is critically important for assessing its mechanical competence and ability to resist fractures. Fracture toughness, which quantifies a material's resistance to crack propagation under controlled geometry, is regarded as the gold standard for evaluating a material's resistance to fracture. However properly conducting this test requires access to calibrated mechanical load frames the destruction of the bone samples, making it impractical for obtaining clinical measurement of bone fracture. Impact microindentation offers a potential alternative by mimicking certain aspects of fracture toughness measurements, but its relationship with mechanistic fracture toughness remains unknown. In this study, we aimed to compare measurements of notched fracture toughness and impact microindentation in fresh and boiled bovine bone. Skeletally mature bovine bone specimens (n=48) were prepared, and half of them were boiled to denature the organic matrix, while the other half remained preserved in frozen conditions. Notched fracture toughness tests were conducted on all samples to determine Initiation toughness (KIC), and an impact microindentation test using the OsteoProbe was performed to obtain the Bone Material Strength index. Boiling the bone samples resulted increased the denatured collagen without affecting mineral density or porosity. The boiled bones also showed significant reduction in both KIC (p < 0.0001) and the average Bone Material Strength index (p < 0.0001), leading to impaired resistance of bone to crack propagation. Remarkably, the average Bone Material Strength index exhibited a high correlation with KIC (r = 0.86; p < 0.001). The ranked order difference analysis confirmed excellent agreement between the two measures. This study provides the first evidence that impact microindentation could serve as a surrogate measure for bone fracture behavior. The potential of impact microindentation to non-destructively assess bone fracture resistance could offer valuable insights into bone health without the need for elaborate testing equipment and sample destruction.

3.
Quant Imaging Med Surg ; 10(1): 57-65, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31956529

RESUMO

BACKGROUND: Finite element models (FEMs) of medical images can provide information about the underlying tissue that cannot be obtained from the original images. Preforming an accurate simulation requires the careful experimental calibration of boundary conditions. Here we describe a method for deriving a geometric mesh for soft biological materials using a magnetic resonance imaging (MRI) system, and an experimental workflow for calibrating the boundary conditions and optimizing the mesh density in these simulations. METHODS: A three-dimensional image stack of a ballistic sphere gel, a bovine caudal intervertebral disc (IVD), and a human lumbar IVD were generated using a positional MRI system. These images were then segmented using a semi-automated process, converted to a tetrahedral mesh, and then modeled as a linear elastic solid. The mesh density was optimized based on simulation time and convergence with the experimental results. The modulus of the ballistic gel was determined experimentally, while the material properties for the nucleus pulposus (NP) and the annulus fibrosus (AF) within the bovine and human IVDs were assigned from literature. The simulation for the spherical gel and the bovine IVD matched the reaction forces determined experimentally in compression. We then simulated a 0.3 MPa compressive load on the human lumbar IVD at the optimal mesh density and material properties determined from the bovine model and then examined the resultant internal strains. RESULTS: The scaled mesh density demonstrated excellent correspondence with the experimental results, confirming that accuracy was not compromised. Both the ballistic gel and the IVD samples exhibited a wide range of internal strains. The NP of the IVD underwent greater deformation than the AF under loading. CONCLUSIONS: This study validated a strategy for mesh optimization and FEM of soft biological materials from data generated from MRI scans. This calibrated approach allows for the rapid examination of internal strain distributions medical images that can be performed on the order of minutes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...